Characteristics of Men Who Report Persistent Sexual Symptoms after Finasteride Use for Hair Loss

Shehzad Basaria1, Ravi Jasuja1, Grace Huang1, Whitney Wharton2, Hong Pan3, Karol Pencina1, Zhuoying Li1, Thomas G. Travison4, Jag Bhawan5, Renaud Gonthier6, Fernand Labrie6, Alain Y. Dury6, Carlo Serra1, Allen Papazian1, Michael O’Leary7, Sami Amr8, Thomas W. Storer1, Emily Stern3,*
Shalender Bhasin1*

1Research Program in Men’s Health: Aging and Metabolism, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA 02115; 2Emory University: Department of Neurology, Atlanta, GA; 3Functional Neuroimaging Laboratory, Department of Radiology, Brigham and Women’s Hospital, Boston, MA 02115; 4Program on Aging, Hebrew Senior Life, Roslindale, MA; 5Department of Dermatology, Boston University School of Medicine, Boston, MA; 6Endoceutics, 2795 Laurier Blvd, QC City, G1V 4M7, Canada; 7Section of Urology, Brigham and Women’s Hospital, Boston, MA 02115; 8Department of Pathology, Harvard Medical School, Boston, MA September 15, 2016

Context: Some men who use finasteride for hair loss report persistent sexual and other symptoms after discontinuing finasteride therapy.

Objective: To determine whether these persistent symptoms after discontinuation of finasteride use are due to androgen deficiency, decreased peripheral androgen action, or persistent inhibition of steroid 5α-reductase (SRD5A) enzymes.

Participants: Finasteride-users, who reported persistent sexual symptoms after discontinuing finasteride (group 1); age-matched finasteride-users who did not report sexual symptoms (group 2); and healthy men who had never used finasteride (group 3).

Outcomes: Sexual function, mood, affect, cognition, hormone levels, body-composition, functional magnetic resonance imaging (fMRI) response to sexually and affectively-valenced stimuli, nucleotide sequences of androgen receptor (AR), SRD5A1 and SRD5A2; expression levels of androgen-dependent genes in skin

Setting: Academic medical center

Results: Symptomatic finasteride-users were similar in body composition, strength, and nucleotide sequences of AR, SRD5A1 and SRD5A2 genes to asymptomatic finasteride-users and nonusers. Symptomatic finasteride-users had impaired sexual function, higher depression scores, a more negative affectivity balance, and more cognitive complaints than men in groups 2 and 3, but had normal objectively-assessed cognitive function. Testosterone, DHT, 5α-androstane-3α,17β-diol glucuronide, testosterone-to-DHT and androsterone glucuronide-to-etiocholanolone glucuronide ratios, and markers of peripheral androgen action, and expression levels of AR-dependent genes in skin did not differ among groups. fMRI BOLD responses to erotic and nonerotic stimuli revealed abnormal function in brain circuitry linked to sexual arousal and major depression.

Conclusions: We found no evidence of androgen deficiency, decreased peripheral androgen action, or persistent peripheral inhibition of SRD5A in men with persistent sexual symptoms after finasteride use. Symptomatic finasteride-users revealed depressed mood and fMRI findings consistent with those observed in depression.
Finasteride, an inhibitor of steroid 5-α reductase type 2 (SRD5A2), is approved for the treatment of benign prostatic hyperplasia (BPH) (1) and androgenic alopecia (2–3). Although a higher frequency of sexual side effects has been noted in finasteride-treated men (4–5), the effects of finasteride on hormone levels and prostate volume in patients with BPH and androgenic alopecia been reported to be reversible (6–7). Recent reports of persistent sexual symptoms, low mood, anxiety, and cognitive complaints in some men, who had used finasteride for hair loss (8–17), even after discontinuation of finasteride therapy, led the Food and Drug Administration to require that the Propecia labels include a warning about persistent libido, ejaculation, and orgasmic problems after drug discontinuation. However, in spite of a large number of patients seeking medical care, ongoing litigation, and a vast amount of anecdotal information available on the internet, even the basic pathophysiologic attributes of this condition, such as the hormone levels, body composition changes, cognitive function, mood, and other characteristics of patients, who report persistent sexual symptoms after discontinuation of finasteride therapy for hair loss, have not been rigorously investigated. Therefore, the underlying pathophysiologic mechanisms remain unknown.

Here we characterized men who reported persistent sexual symptoms after discontinuation of finasteride therapy for hair loss and compared them with men who were finasteride users but did not experience symptoms, as well as to men who had never used finasteride. We elucidated the pathophysiologic mechanisms that might contribute to these persistent symptoms. Because the symptoms reported by these patients resemble those of androgen deficiency, we determined whether persistent symptoms are due to sustained suppression of the hypothalamic-pituitary-testicular axis by finasteride, irreversible suppression of SRD5A, off-target suppression of androgen receptor action, or effects on brain regions that regulate sexual function and mood. To avoid confounding due to age-related changes in hormone levels and sexual function, we recruited adult men below 50 years. We excluded men who reported depression or sexual dysfunction prior to the onset of symptoms. Some patients reported the development of symptoms after ingesting just a few doses of finasteride, while others developed symptoms after months or years of finasteride use. group 2 (nonsymptomatic finasteride users) included men, 18 to 50 years, who had used finasteride for hair loss, but who did not report symptoms after discontinuation of finasteride therapy for hair loss.

Study Design

The study protocol was approved by the institutional review board (IRB) of Brigham and Women’s Hospital, Boston, MA. All participants provided written informed consent. The first participant enrolled on June 13, 2013 and the last participant completed the study on October 30, 2014.

Participants

We studied three groups of men. group 1 (symptomatic finasteride users) included community-dwelling men, 18–50 years, who had used finasteride for hair loss for ≥ 7 days but had not used finasteride in the preceding 4 months, who reported erectile dysfunction defined as a score of ≤ 25 on the erectile function domain (EFD) of the International Index of Erectile Function (IIEF) (18), but who had normal blood counts, chemistries, and physical examination. The eligibility criterion to include men who had used finasteride for hair loss for ≥ 7 days was informed by our clinical experience in which we observed enormous variation in the duration of finasteride exposure prior to the onset of symptoms. Some patients reported the development of symptoms after ingesting just a few doses of finasteride, while others developed symptoms after months or years of finasteride use. group 2 (nonsymptomatic finasteride users) included men, 18 to 50 years, who had used finasteride for hair loss, but who did not have sexual symptoms after discontinuation of finasteride. group 3 consisted of healthy men, 18 to 50 years, who had never used finasteride and who had no sexual symptoms.

We excluded men, who were using currently or had used in the preceding 4 months any androgen, antiandrogen, aromatase inhibitor, or hCG; had recent illness; cancer; diabetes; body mass index (BMI) > 40 kg/m²; or had depression before starting finasteride.

Participant Recruitment

The men who reported persistent symptoms after discontinuation of finasteride use were recruited by solicitation from physicians. Healthy men who had never used finasteride were recruited by advertising in newspapers and direct mailing. The men who had used finasteride but did not report symptoms were recruited by solicitation from physicians and by advertising in newspapers. Those who responded to advertisement underwent telephone screening using a structured questionnaire to ascertain sexual symptoms. Those who met the eligibility criteria during the telephone screening were invited for an in-person visit, during which an informed consent was obtained, and physical examination and blood tests were performed.
Assessments

History of finasteride use and pubertal development was obtained, and a structured physical examination was performed. Hair growth was ascertained by Ferriman-Galloway scale, acne by Palatzi scale, and testicular volume by Prader orchidometer. Sebum production was assessed using Sebu-Tape and the scores range from 1 to 5 (highest). Hair growth was assessed using Ferriman-Galloway scale. The score range: 0 (none) to 2 (dense, dark).

Table 1. Characteristics of Symptomatic Finasteride Users, Non-Symptomatic Finasteride Users and Healthy Non-Users

<table>
<thead>
<tr>
<th>Variable</th>
<th>Finasteride Users, Symptomatic (Group 1) n = 25</th>
<th>Finasteride Users, Non-Symptomatic (Group 2) n = 13</th>
<th>Healthy Non-Users, Control (Group 3) n = 18</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black/African American</td>
<td>1 (4.0)</td>
<td>2 (15.4)</td>
<td>9 (50.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>White</td>
<td>22 (88.0)</td>
<td>8 (61.5)</td>
<td>9 (50.0)</td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>1 (4.0)</td>
<td>3 (23.1)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>1 (4.0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>35.7 (7.2)</td>
<td>37.0 (8.3)</td>
<td>36.8 (8.8)</td>
<td>0.65</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>27.6 (4.3)</td>
<td>27.6 (3.9)</td>
<td>27.3 (3.2)</td>
<td>0.79</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>88.6 (15.9)</td>
<td>89.7 (14.6)</td>
<td>87.5 (14.3)</td>
<td>0.83</td>
</tr>
<tr>
<td>Glucose (mg/dL)</td>
<td>92.4 (8.5)</td>
<td>90.0 (6.2)</td>
<td>95.1 (9.2)</td>
<td>0.37</td>
</tr>
<tr>
<td>Creatinine (mg/dL)</td>
<td>1.00 (0.09)</td>
<td>1.03 (0.16)</td>
<td>0.97 (0.16)</td>
<td>0.58</td>
</tr>
<tr>
<td>Hemoglobin (g/dL)</td>
<td>15.4 (0.88)</td>
<td>14.9 (1.37)</td>
<td>14.6 (0.95)</td>
<td>0.02</td>
</tr>
<tr>
<td>Hematocrit (L/liter)</td>
<td>46.3 (2.7)</td>
<td>44.9 (3.9)</td>
<td>44.8 (2.8)</td>
<td>0.10</td>
</tr>
<tr>
<td>PSA (ng/mL)</td>
<td>0.7 (0.5, 1.0)</td>
<td>0.7 (0.6, 0.9)</td>
<td>0.95 (0.6, 1.4)</td>
<td>0.24</td>
</tr>
<tr>
<td>Testes Sizes (cc)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left</td>
<td>25.9 (3.2)</td>
<td>26.5 (2.4)</td>
<td>25.2 (3.2)</td>
<td>0.50</td>
</tr>
<tr>
<td>Right</td>
<td>25.9 (3.7)</td>
<td>27.1 (2.7)</td>
<td>25.8 (2.9)</td>
<td>0.94</td>
</tr>
<tr>
<td>Gynecomastia</td>
<td>8.3% (2/24)</td>
<td>15.3% (2/13)</td>
<td>11.1% (2/18)</td>
<td>0.86</td>
</tr>
<tr>
<td>Finasteride use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean dose (mg)</td>
<td>1.0 (1.0, 1.1)</td>
<td>1.0 (1.0, 1.0)</td>
<td>N/A</td>
<td>0.31</td>
</tr>
<tr>
<td>Duration of treatment (years)</td>
<td>1.7 (0.5, 6.0)</td>
<td>1.0 (0.7, 2.0)</td>
<td>N/A</td>
<td>0.55</td>
</tr>
<tr>
<td>Time since last dose (years)</td>
<td>3.5 (2.0, 5.0)</td>
<td>3.0 (2.0, 3.0)</td>
<td>N/A</td>
<td>0.19</td>
</tr>
<tr>
<td>Sebum Production Scores</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forehead</td>
<td>5 (4.5)</td>
<td>5 (4.5)</td>
<td>4 (4.5)</td>
<td>0.83</td>
</tr>
<tr>
<td>Nose</td>
<td>3 (3.4)</td>
<td>4 (3.4)</td>
<td>4 (3.4)</td>
<td>0.19</td>
</tr>
<tr>
<td>Back</td>
<td>2 (2.2)</td>
<td>2 (2.2)</td>
<td>2 (2.2)</td>
<td>0.34</td>
</tr>
<tr>
<td>Hair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facial</td>
<td>1 (4.2)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0.47</td>
</tr>
<tr>
<td>Sparse</td>
<td>4 (16.7)</td>
<td>3 (23.1)</td>
<td>1 (5.6)</td>
<td></td>
</tr>
<tr>
<td>Dense, Dark</td>
<td>19 (79.2)</td>
<td>10 (76.9)</td>
<td>17 (94.4)</td>
<td></td>
</tr>
<tr>
<td>Chest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>0 (0)</td>
<td>1 (7.7)</td>
<td>0 (0)</td>
<td>0.65</td>
</tr>
<tr>
<td>Sparse</td>
<td>5 (20.8)</td>
<td>3 (23.1)</td>
<td>3 (16.7)</td>
<td></td>
</tr>
<tr>
<td>Dense, Dark</td>
<td>19 (79.2)</td>
<td>9 (69.2)</td>
<td>15 (83.3)</td>
<td></td>
</tr>
<tr>
<td>Pubic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sparse</td>
<td>1 (4.2)</td>
<td>1 (7.7)</td>
<td>0 (0)</td>
<td>0.71</td>
</tr>
<tr>
<td>Dense, Dark</td>
<td>23 (95.2)</td>
<td>12 (92.3)</td>
<td>18 (100.0)</td>
<td></td>
</tr>
<tr>
<td>Acne</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Face</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>22 (91.7)</td>
<td>12 (92.3)</td>
<td>18 (100.0)</td>
<td>0.46</td>
</tr>
<tr>
<td>Few</td>
<td>2 (8.3)</td>
<td>1 (7.7)</td>
<td>0 (0.0)</td>
<td></td>
</tr>
<tr>
<td>Chest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>24 (100.0)</td>
<td>13 (100.0)</td>
<td>17 (94.4)</td>
<td>0.56</td>
</tr>
<tr>
<td>Few</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>1 (5.6)</td>
<td></td>
</tr>
<tr>
<td>Back</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>11 (45.8)</td>
<td>9 (69.2)</td>
<td>16 (88.9)</td>
<td>0.02</td>
</tr>
<tr>
<td>Few</td>
<td>12 (50.0)</td>
<td>3 (23.1)</td>
<td>2 (11.1)</td>
<td></td>
</tr>
<tr>
<td>Many</td>
<td>1 (4.2)</td>
<td>1 (7.7)</td>
<td>0 (0.0)</td>
<td></td>
</tr>
</tbody>
</table>

The data are mean (sd), median (Q1, Q3) for continuous data and n (%) for categorical data. The data were analyzed using one-way ANOVA F-test for normally distributed data, Kruskal-Wallis test for non-normally distributed and ordinal data, χ²-squared and Fisher exact tests for categorical data. Sebum production was assessed using Sebu-Tape and the scores range from 1 to 5 (highest). Hair growth was assessed using Ferriman-Galloway scale. The score range: 0 (none) to 2 (dense, dark). Acne were assessed using the Palatzi scale; the score range: 0 (none) to 3 (pustular, dense (>15)).

PSA, prostate specific antigen; BMI, body mass index.
ing Sebu-Tapes. Sexual function was assessed using the International Index of Erectile Function (IIEF) (18). This information was supplemented by Male Sexual Health Questionnaire (MSHQ) (19) for more precise assessment of sexual desire and ejaculatory function than is provided by IIEF. Sexual activity was ascertained using sexual encounter profile (SEP) diaries for a period of 7 days. Mood/depression was assessed using PHQ-9 depression scale (20), Beck Depression Inventory (BDI) (21), and Hamilton Depression Scale 17 (HAM-D 17) (22), and affect using the Positive and Negative Affect Scale (PANAS) (23).

Detailed methods for assessment of cognitive function, functional MRI (fMRI), hormone levels, and gene expression are described in the Supplementary Appendix. Briefly, memory complaints were ascertained using the Memory Complaint Questionnaire (MAC-Q); spatial cognition by the full card rotation test; verbal memory using the Wechsler Memory Scale- Revised Logical Memory II; visual memory using the Benton Visual Retention Test; working memory and executive function using the Trail Making Tests A and B; and global cognitive function was ascertained using the Modified Mini Mental State Examination (24). Personality was evaluated using the Eysenck Personality test, which scores individuals in 4 personality domains (25).

Whole body and regional lean and fat mass were measured using dual energy X-ray absorptiometer, calibrated using a soft tissue phantom. Leg press strength was assessed using the Keiser leg press machine. Self-reported physical function was assessed using the physical function domain (PF10) of the Medical Outcomes Study Short Form 36 (26).

Hormone levels were measured in a morning fasting sample in the Brigham Research Assay Core Laboratory. Total testosterone concentrations were measured using a previously published LC-MS/MS assay, which has been certified by the Centers for Disease Control’s HoST Program (27). The lower limit of quantitation was 1 ng/dL, and interassay coefficient of variation 7.9% at 48.6 ng/dL, 7.7% at 241 ng/dL, 4.4% at 532 ng/dL, and 3.3% at 1016 ng/dL respectively. DHT concentrations were measured using an LC-MS/MS assay (27), whose lower limit of quantitation was 1 ng/dL, and interassay CVs at serum concentrations of 5.2, 22.0, and 44.1 ng/dL were 6.1%, 6.5%, and 8.6%, respectively. Estradiol levels were measured using LC-MS/MS after derivatization with dansyl chloride (27). The lower limit of quantitation for both hormones is 2 pg/mL. Interassay CVs for estrone are 4.5%, 7.7%, and 6.9% at concentrations of 8, 77, and 209 pg/mL, respectively, and for estrad...
dil 6.9%, 7.0%, and 4.8% at concentrations of 8, 77, and 206 pg/ml, respectively (27). Free testosterone was measured using tracer equilibrium dialysis (27).

Serum levels of androsterone glucuronide (ADT-G), etiocholanolone glucuronide (Etio-G), androstane-3α,17β-diol 3-glucuronide (3α-diol3G) and androstane-3α,17β-diol 17-glucurone (3α-diol-17G) were measured by LC-MS/MS, using a Poroshell 120 EC-C18 75 × 3 mm, 2.7 μm unit column. Ammonium formate (4 mM) in tetrahydrofuran/2 propanol/water (4/5/91) was used as mobile phase A, while methanol was used as mobile phase B. The transition monitored for 3α-diol-3G was 467.3–85.1 with collision energy set at –47 V. Serum 5α-androstane-3α,17β-diol glucuronide and 5α-androstane-3α, 3β-diol glucuronide were measured using LC-MS/MS as markers of peripheral SRD5A activity (28). We also measured androsterone glucuronide to etiocholanolone glucuronide ratio as a marker of relative steroid 5α- and 5β reductase activities (28). Serum LH, FSH, PSA, SHBG, and DHEAS were measured using immunoluminescence assays (27).

Analyses of Androgen Receptor (AR), SRD5A1 and SRD5A2 Genes

To identify sequencing variants in the coding and splice-sites (+/- 1–2) of the AR, SRD5A1, SRD5A2, an amplicon based enrichment approach followed by next generation sequencing was carried out at the Translational Genomics Core (29–30).

Statistical Methods

Probability distributions were explored using histograms and Q-Q plots. Baseline characteristics are presented as mean and standard deviations or median and interquartile ranges for normally-distributed and skewed data, respectively, and proportions for categorical data. Group differences were tested using one-way ANOVA F-test for normally distributed data, Kruskal-Wallis test for non-normally distributed and ordinal data, and χ² or Fisher exact tests for categorical data. Cognitive function scores were tested using generalized linear model with adjustment for years of education. Log transformation of cognitive outcomes was performed to comply with normality assumption. All tests were two-sided; type I error was set at α=0.05. Post hoc between-group comparisons (eg, group 1 vs 2) were corrected by Bonferroni’s adjustment. Statistical analyses were performed using SAS 9.3 software and R software (version 2.15.1). fMRI analyses are described in the appendix.

Results

Among 282 men who underwent telephone screening, 132 were screened in person, and 25 were included in group 1, 13 in group 2, and 18 in group 3. (Supplemental Figure 1).

The mean age and body size were similar in the three groups (Table 1). The men in groups 1 and 2 had used finasteride at a median daily dose of 1.0 and 1.0 mg, respectively, for an median duration of 1.7 and 1.0 years, respectively. The median time lapsed since the last finasteride dose in groups 1 and 2 was 3.5 and 3.0 years, respectively. Testicular volumes and the proportion of men with gynecomastia were similar across groups.

Hormone Levels

Serum total and free testosterone, DHT, LH, FSH, estradiol and SHBG levels did not differ significantly among groups (P > .1), and were within the normal range for healthy young men (Figure 1). Serum testosterone to DHT ratio, 5α-androstane-3 α, 17 β-diol glucuronide and 5α-androstane-3 α, 3β-diol glucuronide concentrations, and the ratio of androsterone glucuronide to etiocholanolone glucuronide did not differ among groups (Figure 1).

Markers of Peripheral Androgen Action

Hair growth, acne, sebum production, and testosterone-responsive markers, hematocrit and PSA, did not differ significantly among groups (Table 1). The expression levels of nuclear AR and β-catenin protein in the sebaceous glands and epidermis (Supplemental Figure 2), and other androgen-regulated mRNA transcripts in skin biopsies (Supplemental Figure 3) did not differ among groups.

Androgen Receptor and Steroid 5-α reductase Genes

Next generation sequencing of the coding regions and splice sites of AR, SRD5A1, and SRD5A2 failed to reveal any significant variants with potentially deleterious changes (nonsense or frameshift variants) in any sample. While a few missense variants of unknown impact on the protein were identified in some individuals, none were enriched in any cohort, and these were reported at similar frequencies as in general population databases such as 1000 Genomes (http://www.1000genomes.org/) and Exome Aggregation Consortium (http://exac.broadinstitute.org/). The lengths of the CAG repeats in exon 1 did not differ significantly among groups (Mean (95% Confidence Limits): group 1: 22.2 ± 2.2, group 2: 21.8 ± 2.5, group 3: 21.0 ± 2.3, P = .236).

Sexual Function and Activity

The men in group 1 had significantly lower IIEF composite score (median (quartile range): 30.0 (23.0–35.0); 67.0 (65.0–68.0); 68.5 (67.0–71.0) for groups 1, 2 and 3, respectively; P < .001 overall and for each between-group comparison) and significantly lower scores for each of its domains of erectile function, sexual desire, orgasmic func-
tion, intercourse satisfaction, and overall satisfaction than men in groups 2 and 3. Men in group 1 had significantly fewer vaginal penetrations ($P < .01$) and satisfactory sexual encounters ($P < .001$) than in men in groups 2 or 3 (Figure 2A). The MSHQ confirmed significantly lower sexual desire ($P < .001$ overall and for each between-group comparison; median (quartile range): 17.0 (16.0–21.0), 28.0 (26.0–30.0), and 29.5 (26.0–31.0) for groups 1, 2 and 3, respectively) and worse ejaculatory function ($P < .001$; median (quartile range): 14.0 (13.0–15.0), 17.0 (16.0–17.0), 17.0 (15.0–17.0) for groups 1, 2 and 3, respectively) in group 1 than in groups 2 ($P < .001$) and 3 ($P = .006$; Figure 2A). The IIEF composite score was not significantly related to either the duration of finasteride treatment ($r = 0.059, P = .725$) or the time lapsed since the discontinuation of finasteride treatment ($r = -0.215, P = .194$).

Mood, Affect, and Personality Type

The PHQ-9 depression scores were significantly higher in group 1 than in the other two groups ($P < .001$ overall and for each between-group comparison); median (quartile range): 11.0 (7.0–17.0), 1.0 (1.0–2.0), 1.0 (0–2.0) for groups 1, 2 and 3, respectively; the median scores of group 1 patients were in the moderate depression range (Figure 2B). The PHQ-9 score was not significantly related to either the duration of finasteride treatment ($r = 0.139, P = .406$) or the time lapsed since the discontinuation of finasteride treatment ($r = -0.222, P = .180$). BDI ($P < .001$) and Hamilton Depression Inventory (Overall and between-group comparisons $P < .001$) also revealed significantly higher depression scores in men in group 1 than in men in groups 2 or 3. The men in group 1 reported substantially higher scores for negative affect (overall and between-group comparisons $P < .001$) and significantly lower scores (overall $P = .003$; group 1-vs.-2 $P = .006$; group 1-vs.-3 $P = .02$) for positive affect compared to those in groups 2 and 3 (Figure 2B). The men in group 1 scored significantly lower on the extraversion scale ($P = .003$) and higher on the neuroticism scale ($P < .001$) than men in groups 2 and 3 (Figure 2B).
Body Composition, Strength, and Physical Function

Whole body lean and fat mass, truncal and appendicular lean and fat mass, trunk to limb fat ratio, and visceral adipose tissue (VAT) mass did not differ significantly (all $P > .1$) among groups (Figure 3).

Leg press strength did not differ significantly among groups, but PF10 score was significantly lower in men in group 1 than in men in groups 2 and 3, although the absolute difference was small ($P = .002$; median [quartile range]: 28.0 [25.0–30.0], 30.0 [30.0–30.0], 30.0 [29.0–30.0] for groups 1, 2, and 3, respectively) (Figure 3).

Cognitive Function

The men in group 1 reported higher subjective memory complaints than healthy nonusers, after adjusting for years of education (overall $P = .02$; mean ± SD MAC-Q scores: 20.8 ± 4.9, 18.4 ± 3.8, 16.9 ± 3.3 for groups 1, 2, and 3, respectively); however, between-group differences were not significant. The three groups did not differ significantly on paragraph recall test, trail making tests A and B, Card Rotation Test, and the Paragraph Recall Test (Table 2). Scores on Benton Visual Retention Test showed borderline differences among groups (overall $P = .05$; group 1-vs-2 $P = .32$; group 1-vs-3 $P = .04$).

Functional Magnetic Resonance Imaging

Two separate fMRI activation tasks, one targeting affective dysfunction and one focused on sexual arousal, were conducted. We hypothesized that with increasing sexual dysfunction there would be abnormal function in the brain network associated with sexual arousal, which would correlate with IIEF scores. In addition, there would be abnormalities in neural circuitry similar to those seen in patients with major depression, which would correlate with measures of negative mood (2–4).

Word valence ratings were significantly different among negative, neutral, and positive words. The three groups did not differ significantly in their rating of all 3 word types or in their recognition rates corrected for the distracter words in the form of discrimination index d' in all 3 word types (Supplemental Table 1).

There was a significant main effect of image type on emotional intensity ($P < .001$), positivity ($P < .001$), and sexual intensity ($P < .001$) ratings, indicating the intended stimulus perception (Supplemental Table 1). There were significant differences in emotional intensity ratings between neutral and positive erotic images ($P < .001$) and between neutral and positive nonerotic images ($P = .048$).
but not between positive erotic images. However, there was no significant main effect of group on any image rating scale. Sexual intensity ratings showed significant differences between neutral and positive erotic images \((P < .001)\), and between positive nonerotic and erotic images \((P < .001)\).

A correlation analysis was performed across all finasteride users to assess the hypothesized association between blood oxygen level dependent (BOLD) activation levels during exposure to erotic images (compared to nonerotic images matched for valence and level of arousal), and IIEF scores. A negative correlation was observed between IIEF score and BOLD activity in the hypothalamus, bilateral thalamus, right posterior cingulate cortex \((P < .01)\). Positive correlations were observed between IIEF score and BOLD activity in the right middle cingulate, right posterior cingulate, left insula, right precentral gyrus, left inferior parietal cortex, left caudate \((P < .01)\) and left putamen \((P < .05)\) (Figure 4 and Table 2).

A significant positive correlation between negative attitude scores on the BDI and BOLD activity levels was identified in regions associated with major depression, including the right nucleus accumbens, left pregenual anterior cingulate cortex, right insula, right lateral orbitofrontal cortex, and left posterior cingulate \((P < .01)\). There was negative correlation between the BDI subscores and BOLD activity in regions including the right parahippocampal/fusiform gyrus (Figure 4 and Supplemental Table 2).

Discussion

This systematic evaluation of men, who reported persistent sexual symptoms after discontinuation of finasteride therapy for hair loss, found no evidence of androgen deficiency. Serum DHT levels, testosterone to DHT ratios, and circulating markers of tissue testosterone metabolism through the 5α reductase pathway - 5α-androstane-3α, 17β-diol glucuronide, and 5α-androstane-3α, 3β-diol glucuronide levels and the ratio of androsterone glucuronide to etiocholanolone glucuronide – were similar among groups providing no evidence of persistent inhibition of peripheral SRD5A activity by prior finasteride use. The nucleotide sequences of the AR, SRD5A1, and SRD5A2 genes did not reveal any explanatory variation in the coding regions or splice sites, or in CAG repeat length in men with persistent symptoms. Furthermore, the peripheral markers of androgen action - hair growth, acne, and sebum production, hematocrit, PSA levels, lean body mass, and the expression levels of nuclear AR and β-catenin proteins, and other androgen-regulated mRNA transcripts in the skin – did not differ among groups. Although we did not have a control group of profoundly hypogonadal men such as those receiving androgen deprivation therapy, the analyses of differential gene expression did not reveal patterns of alterations in gene expres-
Figure 4. **Upper Panel. Sexual function network activations correlated with IIEF total scores (lower scores indicate greater dysfunction) in the Erotic Image paradigm.**

The functional MRI studies were performed in right-handed males (10 postfinasteride patients - 6 symptomatic and 4 nonsymptomatic; mean age = 33.4 years, range = 26–49) and 10 healthy controls (mean age = 35.1 year, range = 26–47). In the upper panel, the statistical parametric maps show the correlation in t-statistic between the differential blood oxygen level dependent (BOLD) neural activation changes in the erotic vs. nonerotic image contrast and the IIEF total scores, thresholded at a voxelwise p-value of 0.05 for visualization purposes. In the erotic vs. nonerotic image contrast, negative correlations were identified in the hypothalamus ([0,9,–9]; peak z-score = -3.09; corrected p-value = 0.014, and right thalamus ([15,–27,9]; peak z-score = −3.3; corrected p-value = 0.008). Positive correlation was identified in the right mid cingulate cortex ([9, 6, 48]; peak z-score = 3.55; corrected p-value = 0.005). In the corresponding plots with regression lines (center figures), individual patient’s differential BOLD neural activation changes in the erotic vs. nonerotic
sion that have been reported previously after androgen deprivation or androgen supplementation in preclinical and clinical models (31–32). Thus, persistent sexual symptoms in men who had previously used finasteride, are unlikely to be due to androgen deficiency, variations in the coding regions of the AR, SRD5A1, or SRD5A2 genes, persistent peripheral inhibition of SRD5A1 and SRD5A2 genes, or to persistent off-target inhibitory effects of finasteride on peripheral androgen action.

Because these men were recruited based on persistent sexual symptoms after discontinuation of finasteride therapy, the findings of erectile dysfunction and low sexual desire are not surprising. These men also exhibited depressed mood; the average scores of symptomatic finasteride users on the three depression scales were in the range exhibited by men with moderately severe depression. Symptomatic finasteride users also had higher levels of negative affect and lower levels of positive affect compared to healthy controls. Although we excluded men who were depressed prior to initiating finasteride, we do not know whether the depressed mood in men in group 1 was causally related to finasteride use, alopecia itself (33), or nocebo effect (34).

This study utilized two separate fMRI activation probes to target specific symptoms reported by these patients: sexual dysfunction and depression (specifically negative attitude). Studies (35–36) of the neurobiology of sexual arousal have converged on a multidimensional network comprising cognitive (parietal, anterior cingulate, thalamus, insula), emotional (amygdala, insula), motivational (precentral gyrus, parietal cortex) and physiological (hypothalamus, thalamus, insula) components. As sexual function worsened (ie, as IIEF scores went down), there was increasing activity in the neural circuits corresponding to sexual arousal and decreasing activity in brain regions associated with higher level cognitive and motivational networks in symptomatic finasteride users in response to erotic stimuli. This dissociation in activity may be a marker of neural changes postfinasteride use. Similar abnormalities in these brain regions have been identified in psychogenic erectile dysfunction (38–39). We also found a significant positive correlation between a subset of BDI scores related to negative attitude and BOLD activity in the right nucleus accumbens, left pregenual anterior cingulate cortex, right insula, right lateral orbito-frontal cortex, and left posterior cingulate, as well as a negative correlation between BDI subscores and BOLD activity in the right parahippocampal/fusiform gyrus. This neural circuitry overlaps with functional abnormalities that have been identified in major depression (40–41). These two fMRI experiments suggest that there are underlying neurobiological abnormalities in symptomatic finasteride users, which can be linked to circuitry that has been implicated in both depression and in sexual arousal.

Symptomatic finasteride users also reported a slightly greater number of subjective cognitive complaints. However, we found no objective evidence of cognitive deficits using comprehensive tests of multiple domains of cognition. It is possible that mood and cognitive complaints may be related to reduced neurosteroid production due to persistent local inhibition of SRD5A activity in specific brain regions (42), which was not reflected in changes in peripheral DHT levels.

These findings need confirmation in larger prospective studies. Because of the cross-sectional nature of the study, a causal relation between prior finasteride use and persistent sexual symptoms, mood changes, cognitive complaints, or fMRI findings cannot be inferred. It is possible that the depressive symptoms and prior finasteride use are coincidental or that the depressed mood may contribute to sexual dysfunction. It is unclear why only a subset of finasteride users experience persistent sexual symptoms and low mood. Although we did not find evidence of sequence variation in AR, SRD5A1, or SRD5A2 genes, or of sig-

Legend to Figure 4 Continued...
nificant alterations in expression of AR-dependent genes in the skin, we cannot exclude the possibility of variations in other genes or in the gene expression levels in other tissues or specific brain regions involved in regulation of mood and sexual function. It is also possible that finasteride may exert epigenetic effects which may account for persistent symptoms.

The clinical implications of these findings are that symptomatic finasteride users are unlikely to benefit from treatment with testosterone, DHT, or any other androgen because these patients do not have evidence of androgen deficiency, persistent SRD5A inhibition or androgen insensitivity. Attention may be focused instead on the treatment of depression and sexual symptoms. Furthermore, as men seeking treatment for alopecia have higher prevalence of depression and sexual dysfunction than the general population (33), it would be appropriate to ascertain history of depression or sexual dysfunction before starting treatment.

In conclusion, in a subset of men, who reported persisting sexual symptoms after prior finasteride use, we found no evidence of androgen deficiency, persistent inhibition of peripheral SRD5A activity, or diminished peripheral androgen action. The men reporting persistent sexual symptoms had depressed mood, negative affectivity balance, and patterns of brain activity that correlated specifically with sexual and negative affective symptoms, and included regions known to be involved in sexual function and depression, respectively.

Acknowledgments

Funding: This investigator-initiated study was supported by funds provided by the Post-Finasteride Syndrome Foundation and by the Harvard Clinical Translational Research Institute (Catalyst) and the Center for Clinical Investigation at the Brigham and Women’s Hospital.

We gratefully acknowledge the assistance of Jane Epstein in the implemenation of the MRI protocol for this study.

Address all correspondence and requests for reprints to: Shalender Bhasin, MB, BS, Professor of Medicine, Harvard Medical School, Director, Research Program in Men’s Health: Aging and Metabolism, Director, The Center for Clinical Investigation, Brigham and Women’s Hospital, 221 Longwood Avenue, Boston, MA 02 115, Email address: sbhasin@partners.org, Phone 617 525 9150.

This work was supported by Funding: This investigator-initiated study was supported in part by funds provided by the Post-Finasteride Syndrome Foundation (A nonprofit organization whose goal is to support research on the characterization, underlying biologic mechanisms and treatments of postfinasteride syndrome (PFS), and to increase global public awareness of PFS (www.pfsfoundation.org)) and by the Harvard Clinical Translational Research Institute (Catalyst) and the Center for Clinical Investigation at the Brigham and Women’s Hospital. The PFS Foundation played no role in study design, data collection, or data analysis, or in the writing of this manuscript.

* ES and SBh are joint senior authors.

Disclosure Summary: Dr. Basaria has received grant support from Abbott Pharmaceuticals for investigator-initiated studies unrelated to this study and has previously consulted for Eli Lilly, Inc. Dr. Bhasin has received research grant support from Abbvie Pharmaceuticals, Transition Therapeutics, Takeda Pharmaceuticals, and Eli Lilly, Inc. for investigator-initiated research unrelated to this study. Dr. Bhasin has served as a consultant to AbbVie, Regeneron, Novartis, and Eli Lilly & Co. SB has a financial interest in Function Promoting Therapies, LLC, a company aiming to develop innovative solutions that enhance precision and accuracy in clinical decision making and facilitate personalized therapeutic choices in reproductive health. SB’s interests were reviewed and are managed by Brigham and Women’s Hospital and Partners HealthCare in accordance with their conflict of interest policies. Other authors have reported no conflicts.

References

